Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm
نویسندگان
چکیده
Application of support vector regression (SVR) with chaotic sequence and evolutionary algorithms not only could improve forecasting accuracy performance, but also could effectively avoid converging prematurely (i.e., trapping into a local optimum). However, the tendency of electric load sometimes reveals cyclic changes (such as hourly peak in a working day, weekly peak in a business week, and monthly peak in a demand planned year) due to cyclic economic activities or climate seasonal nature. The applications of SVR model to deal with cyclic electric load forecasting have not been widely explored. This investigation presents a SVR-based electric load forecasting model which applied a novel hybrid algorithm, namely chaotic genetic algorithm (CGA), to improve the forecasting performance. With the increase of the complexity and the larger problem scale of tourism demands, genetic algorithm (GA) is often faced with the problems of premature convergence, slowly reaching the global optimal solution or trapping into a local optimum. The proposed CGA based on the chaos optimization algorithm and GA, which employs internal randomness of chaos iterations, is used to overcome premature local optimum in determining three parameters of a SVR model. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SSVRCGA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-e-SVR-SA models. Therefore, the SSVRCGA model is a promising alternative for electric load forecasting. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
SVR with Hybrid Chaotic Immune Algorithm for Seasonal Load Demand Forecasting
Accurate electric load forecasting has become the most important issue in energy management; however, electric load demonstrates a seasonal/cyclic tendency from economic activities or the cyclic nature of climate. The applications of the support vector regression (SVR) model to deal with seasonal/cyclic electric load forecasting have not been widely explored. The purpose of this paper is to pre...
متن کاملHybrid Chaotic Quantum Bat Algorithm with SVR in Electric Load Forecasting
Hybridizing evolutionary algorithms with a support vector regression (SVR) model to conduct the electric load forecasting has demonstrated the superiorities in forecasting accuracy improvements. The recently proposed bat algorithm (BA), compared with classical GA and PSO algorithm, has greater potential in forecasting accuracy improvements. However, the original BA still suffers from the embedd...
متن کاملApplications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting
Accurate electricity forecasting is still the critical issue in many energy management fields. The applications of hybrid novel algorithms with support vector regression (SVR) models to overcome the premature convergence problem and improve forecasting accuracy levels also deserve to be widely explored. This paper applies chaotic function and quantum computing concepts to address the embedded d...
متن کاملHybridization of Chaotic Quantum Particle Swarm Optimization with SVR in Electric Demand Forecasting
Abstract: In existing forecasting research papers support vector regression with chaotic mapping function and evolutionary algorithms have shown their advantages in terms of forecasting accuracy improvement. However, for classical particle swarm optimization (PSO) algorithms, trapping in local optima results in an earlier standstill of the particles and lost activities, thus, its core drawback ...
متن کاملApplication of Hybrid Quantum Tabu Search with Support Vector Regression (SVR) for Load Forecasting
Hybridizing chaotic evolutionary algorithms with support vector regression (SVR) to improve forecasting accuracy is a hot topic in electricity load forecasting. Trapping at local optima and premature convergence are critical shortcomings of the tabu search (TS) algorithm. This paper investigates potential improvements of the TS algorithm by applying quantum computing mechanics to enhance the se...
متن کامل